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Abstract. apprentice is a tool developed for event generator tuning. It con-

tains a range of conceptual improvements and extensions over the tuning tool

Professor. Its core functionality remains the construction of a multivariate an-

alytic surrogate model to computationally expensive Monte-Carlo event gen-

erator predictions. The surrogate model is used for numerical optimization in

chi-square minimization and likelihood evaluation. Apprentice also introduces

algorithms to automate the selection of observable weights to minimize the ef-

fect of mis-modeling in the event generators. We illustrate our improvements

for the task of MC-generator tuning and limit setting.

1 Introduction
Monte Carlo-based (MC) event generators are necessary tools for interpreting data at the high

energy frontier. MCs contain O(10-100) parameters that are tuned to match selected data to

allow predictions for other sets of data. In many cases, the limiting factor to precision physics

at the LHC is our lack of confidence in the MC predictions. The tuning task is daunting

because of the large number of parameters that should be explored and the computational

cost of simulations. For the large datasets of collider data that are available for MC tuning, a

common heuristic to evaluate the goodness of a prediction is:

χ2(p,w) =
∑
O∈SO
wO
∑
b∈O

(tb(p) − Rb)2

Δtb(p)2 + ΔR2
b

, (1)

where SO is the set of observables O used in the tune, each observable has a weight wO
represented by a vector w, tb(p)/Rb is the theory prediction/reference data in a given bin b of

an observable and the Δtb/ΔRb’s are error estimates on these quantities.

Our problem is to minimize χ2(p,w) as a function of the adjustable parameters p and

possibly the observable weights w. To accomplish this, one needs a range of theory predic-

tions tb for different possible parameter choices p and a method or principle for choosing w.

As an additional output, it is desirable to have an estimate of what range of parameters p are

compatible with the data at a given confidence level.

In the following, we report on apprentice, a successor to the tool Professor [1] that was

developed to accomplish these goals.
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2 Problems Solved using apprentice

Professor is a public tool that was introduced to automate and accelerate the tuning of event

generators. Based on a modest number of MC simulations, it constructs a polynomial approx-

imation surrogate to these predictions in each bin of a histogram representing the observables

that drive the tuning. Given the surrogate function, an "optimal" set of tuned parameters p is

determined by minimizing the heuristic (1).

Professor has been used successfully to create a number of MC tunes and in other con-

texts. Nonetheless, there are certain aspects that could be improved. First, the polynomial fit

to the MC predictions is adequate for well-behaved distributions, but does not perform well

for a prediction x with distribution ∼ 1/x. Second, the suite of minimizers available is limited

to those in SciPy and the CERN Minuit package. The dependence on minimizer, if any, needs

to be explored. Third, the choice of weights wO is done manually, and any optimization over

them must be done in a costly, iterative process. An algorithm for automatically selecting

these weights is desirable.

The desire to address these three issues has led to the development of a new public tool

that is sufficiently different from its predecessor to have its own name: apprentice.

In the following, we motivate the use of apprentice by listing the problems that apprentice

can currently solve and by highlighting the advantages of using apprentice to solve these

problems, especially for HEP applications.

2.1 Rational Approximation as a Surrogate Function

Polynomial models are relatively easy to build and use. However, they have poor extrap-

olation behavior and are severely limited in their ability to cope with singularities. These

drawbacks can reduce their effectiveness at representing physics models. On the other hand,

rational functions (quotients of polynomials) can be considerably more effective [2, 3] at

representing models that have real or apparent pole structure. Unfortunately, rational approx-

imations can be numerically fragile to compute and are prone to having spurious singularities.

apprentice is capable of computing multivariate rational approximations r(x) = p(x)/q(x)

to simulation data using three approaches. The first is based on the univariate methods of

[4, 5] and provides a robust and efficient way to compute the coefficients of p(x) and q(x).

Although it tries to reduce the appearance of unwanted singularities by using ideas from

linear algebra to minimize the degree of q(x), it does not guarantee that r(x) will be pole free

in the parameter domain D.

The second uses a constrained optimization formulation that includes structural con-

straints on r(x) to enforce the absence of poles in D. Although this approach is computa-

tionally more expensive than the first, it guarantees that the computed approximation is free

of poles for box-shaped parameter domains, which can be crucial when computing surrogate

models for use in optimization. In particular, the guaranteed absence of poles ensures that

subsequent optimization problems involving our rational approximations are well-defined.

The third approach is a specialization of the second that is used to efficiently find a pole-

free rational approximation by making q(x) = AT x+b linear. This is achieved using auxiliary

variables to write the dual of the linear program minx AT x + b s.t. x ∈ [L,U] as a

constraint to force the denominator to be greater than 0 or be pole-free. The advantage of this

approach is that it requires solving the optimization problem only to find a pole-free rational

approximation (as opposed to an iterative approach) and hence it is more efficient.



2.2 Tuning Problem

The goal of the tuning problem is to find an optimal set of physics parameters, p∗, that mini-

mizes the function (1). When the theory prediction tb(p) is based on simulated data from the

MC event generator, the computational cost is high (the generation of 1 million events for a

given set of parameters consumes about 800 CPU minutes on a typical computing cluster),

severely limiting the number of parameter choices p that can be explored in the tuning. To

overcome this issue, we construct a parametrization of a modest number of MC simulations

i.e., of MCb(p) and ΔMCb(p) of each bin b as a polynomial or rational approximation using

apprentice as discussed in the previous section. Thus tb(p) becomes our analytic surrogate

fb(p), which is easy to compute (it can be evaluated in milliseconds) and minimize. For

performing this optimization, the solver options of Truncated Newton method [6], Newton-

conjugate gradient method [7], LBFGS-B algorithm [8], and Trust region algorithm [9] from

python’s SciPy package are provided within apprentice.

2.3 Automatic Selection of Observable Weights

To tune parameters as discussed in the previous section, the weights wO in χ2(p,w) need

to be specified. In practice, the weights are adjusted manually, based on experience and

physics intuition: the expert fixes the weights and minimizes (1) over the parameters p. If the

resulting fit is unsatisfactory, a new set of weights is selected, and the optimization over p is

repeated until the tuner is satisfied. Our goal is to automate the weight adjustment, yielding a

less subjective and less time-consuming process.

In apprentice, the automatic selection of weights is achieved using two mathematical

formulations: bilevel and robust optimization. In bilevel optimization, a merit function is

minimized over the set of weights. apprentice provides three options for merit functions.

The first is the portfolio objective function, which is motivated by portfolio optimization

in finance, where the goal is to maximize the expected return while minimizing the risk.

Translated to our problem, we want to minimize the expected error over all observables while

also minimizing the variance over these errors. The second and the third merit functions are

based on the central values for scoring schemes with a scoring rule, S (P, x) = −
(

x−μP
σP

)2 −
logσ2

P, where model P has mean performance μP and variance σ2
P. For our application,

x corresponds to the simulation prediction fb(p), μP to our observation data Rb, and the

variance σ2
P to our data uncertainty ΔRb. The second merit function maximizes the sum over

all observables of the mean across all bins in that observable of each bin’s scoring function.

The third merit function maximizes over the median. The scoring function for bin b is defined

as

{ (
fb (̂pw) − Rb

ΔRb

)2
+ log(ΔR2

b)

}
. Since we don’t have the full analytical expression of the

outer objective function, this function is approximated with a radial basis function (RBF) [10]

to perform the bilevel optimization in apprentice.

Robust optimization is a single-level formulation for finding the optimal weights for

χ2(p,w). It estimates the parameters p that minimize the largest deviation ( fb(p) − Rb)2 over

all bins in an uncertainty setUb of bin b. Assuming that the experiment and the MC simula-

tion are described using independent random variables with mean Rb, the uncertainty setUb

for each bin b is described by the interval [Rb − ΔRb − Δ fb(p),Rb + ΔRb + Δ fb(p)]. Since

( fb(p) − Rb)2 is a square function, the largest deviation occurs at either end of the interval.

Using this, the robust optimization formulation can be easily rewritten as a one shot single

level optimization problem. To avoid the trivial solution of all weights being zero, the sum of

the weights w ∈ [0, 1] across all the observables is required to cover at least μ% of the total

observables in SO, where μ is a hyperparameter set by the end user.



3 Using apprentice

The source code for apprentice is available at https://github.com/HEPonHPC/apprentice. For

each problem described in Section 2, we provide a convenient script that the end user can

use directly with appropriate input arguments to solve that problem for their use case. In this

section, we first describe how to clone and install apprentice, and, then, how the interface

scripts can be used by the end user to directly solve their problem. For this, we describe the

important arguments of each script in this section. For the complete usage, run the script using

the -h flag. Then, we describe what output to expect from each of these scripts. Additionally,

we also note the software features that are currently implemented for each problem.

3.1 Setting up apprentice

To clone and install apprentice, the following commands can be used from a Unix Terminal:

$git clone --recurse-submodules git@github.com:HEPonHPC/apprentice.git
$cd apprentice
$pip install .
$cd pyoo
$pip install .

3.2 Creating Polynomial and Rational Approximations

We provide an easy-to-use script at apprentice/bin/app-build to create a rational ap-

proximation r(x) = p(x)/q(x) for an arbitrary degree for p(x) and q(x) or when the order of

q(x) is one or zero i.e., polynomial approximation. The important arguments of the script are:

(a) args[0]: Location of directory of YODA files or of the HDF5 file with the MC genera-

tor central values and uncertainty values for all bins to build approximations for, (b) –order:

order of numerator polynomial and denominator polynomial separated by a comma e.g., 2,1,

(c) –errs: Boolean, which if True then the approximation Δ fb(p) is created for MC generator

uncertainty values, otherwise the approximation fb(p) is created for MC generator central

values, (d) –pnames: data file with parameter names (one name per line of the text file), (e)

-t: Number of multistarts to use for pole detection, and (f) -o: Output JSON file location.

The output is a JSON object, where the keys at the first level are the bin names, and, at the

second level, include: (a) dim: Number of parameter dimensions, (b) m: order of numerator

polynomial, (c) n: order of denominator polynomial (present if order of denominator poly-

nomial is greater than 0), (e) pcoeff : numerator coefficients1, and (f) qcoeff : denominator

coefficients (present if order of denominator polynomial is greater than 0).1

3.3 Solving the χ2 Tuning Problem

For solving the tuning problem described in Section 2.2, the interface script is located at

apprentice/bin/app-tune2. The important arguments of the script are: (a) args[0]:

Weights text file location with two columns (separated by a space) where the first column are

the observable names O ∈ SO and the second column contain wO. (b) args[1]: Measurement

data central and uncertainty values in JSON format where the first level of keys are the bin

names and the corresponding value is a two-element array containing central and uncertainty

values, (c) args[2]: Approximation JSON file location created using the script described in

Section 3.2 for the MC generator central values, (d) -e: Approximation JSON file location

1The order of the coefficients can be found in people.sc.fsu.edu/~jburkardt/py_src/monomial/monomial.html



created using the script described in Section 3.2 for the MC generator uncertainty values, (e)

-s|–survey: Size of survey when determining the starting point, (f) -r|–restart: Number of

restarts to use with different starting points with the aim of finding multiple local minima,

(g) –msp: Manual start parameter vector to use (values separated by a comma), and (h) -a|–
algorithm: The minimization algorithm, options include: tnc for Truncated Newton method,

ncg for Newton-conjugate gradient method, lbfgsb for LBFGS-B algorithm, and trust for

Trust region algorithm.

The output of this script are the parameters p∗, χ2(p∗,w), and some other pertinent in-

formation about the optimization for logging purposes. This script also supports running the

optimization with multiple starting points in parallel using mpi4py [11].

3.4 Event Generator Tuning by Automatic Selection of Observable Weights

In this section, we describe the interface scripts for solving generator tuning problems with

automatic selection of observable weights.

3.4.1 Bilevel Optimization Formulation

Solving the generator tuning problem with selection of observable weights using the bilevel

optimization formulation as described in Section 2.3 requires two steps: (a) generating the

data to train the RBF that will be used as an approximation of the outer level objective func-

tion and (b) solving the bilevel optimization problem with either of the three merit functions

of the portfolio function, the mean of the scoring function (meanscore), or the median of

the scoring function (medianscore). The interface script for generating the training data is

at apprentice/pyoo/bin/pyoo-train. The arguments args[0], args[1], args[2], -e, -s|–
survey, and -r|–restart of this script mean the same as those described in Section 3.3. Ad-

ditional (important) arguments of the script are: (a) -d|–design Size of the initial design, (b)

-o|–output Training data output file, and (c) –seed Random seed to use.

Using the training output data (a JSON file), we can run the interface

scripts for solving the bilevel optimization using the portfolio objective found

at apprentice/pyoo/bin/pyoo-run-portfolio, meanscore objective found at

apprentice/pyoo/bin/pyoo-run-meanscore, and medianscore objective found at

apprentice/pyoo/bin/pyoo-run-medianscore. The arguments for all three scripts are

the same. Also, the arguments args[0], args[1], args[2], -e, and -s|–survey of these scripts

mean the same as those described in Section 3.3. Additional (important) arguments of the

script are: (a) args[3]: Training data JSON file, (b) -n|–niterations: Number of iterations to

use, and (c) -o|–output: Output JSON file.

The output of each script is a JSON object with keys such as X_outer, X_inner, Y_outer,

hnames and pnames. The keys X_outer and X_inner point to an array of array where each

array element in the outer array are the weights w∗ of the observables and the parameters p∗
obtained in each iteration of the outer optimization. The best weight and parameter element in

the output corresponds to the index of the smallest value in the array against the key Y_outer
i.e., smallest outer objective value. The order of the observables and parameter dimensions

that the weights and parameter values correspond to can be found against the keys hnames
and pnames, respectively.

3.4.2 Single Level Robust Optimization Formulation

To solve the generator tuning problem where the observable weights are selected us-

ing the robust optimization approach (see Section 2.3), the interface script is located at



apprentice/pyoo/bin/pyoo-robopt. The important arguments of the script are: (a) -w|–
weights: Weight file (see description of arg[0] in Section 3.3), (b) -d|–expdata: Measurement

data (see description of arg[1] in Section 3.3), (c) -a|–approx: MC central values approxi-

mation JSON file (see description of arg[2] in Section 3.3), (d) -e|–error: See description

of -e|–error in Section 3.3, (e) -o|–outtdir: Output directory where the output JSON file and

the optimization log files are stored (more details below), (f) -s|–solver: Solver where the

options are ipopt that makes use to IPOPT solver with AMPL solver interface (ASL) using

PYOMO [12, 13] and cyipopt [14] uses the python wrapper around IPOPT and avoids mak-

ing use of PYOMO and the ASL, and (g) -m|–mu: Hyperparameter μ ∈ [0, 1] is the value to

be used in the constraint to avoid tivial solutions of all weights being zero.

The output of the script is a JSON object where the weights w∗ of the observables are

in the array pointed by the key X_outer, the parameters p∗, which is obtained by solving

the χ2 tuning problem using w∗, are in the array pointed by the key X_inner. The order of

the observables and parameter dimensions that the weights and parameter values correspond

to can be found against the keys hnames and pnames, respectively. Additionally, the object

pointed by the key log contains some pertinent information about the optimization for logging

purposes.

4 Impact of apprentice for HEP applications

In this section, we discuss the impact of the problems that can be solved using apprentice for

HEP applications.

4.1 Rational Approximation for High Energy Physics

As a demonstration of the utility of rational approximations, we consider the problem of

setting limits on dark matter particles in a future direct detection Xenon-based experiment

(see [15, Sec. 26]). The physics model has three parameters, x = (mχ, c+, cπ), representing

the dark matter particle mass (ranging over 10-100GeV/c2) and two (dimensionless) cou-

plings to ordinary matter (ranging from 10−4-10−3 and 10−3-10−1, respectively). We consider

a “binned likelihood” analysis [16] of L(x(k)|d1, d2, . . . , d6) =

6∏
b=1

Nb(x(k))dbeNb(x(k))

Γ(db + 1)
, where

the db represent six data points and Nb(x(k)) denote the simulated quantities for a point x(k)

that correspond to the db. Since no measured data exists as yet, we assume a signal consis-

tent with a dark matter mass mχ = 10 GeV/c2 and an interaction strength large enough to

produce approximately 100 events, yielding {d1, d2, . . . , d6} = {70.4, 26.7, 9.8, 3.4, 1.0, 0.2},
simulated by using a specific framework of the generalized spin-independent response to dark

matter in direct detection experiments [17, 18]. Regions of parameter space consistent with

the simulated data are found using MultiNest [19–21]. This requires the evaluation of the

likelihood function at tens of thousands2 of x(k) to succeed, and the computational cost can be

substantial. To reduce the cost, we replace the expensive simulation of Nb with the cheaper

evaluation of a rational approximation surrogate. The results presented here are for rational

approximations of degree M = 4,N = 4 as well as polynomial approximations of degree 7.3

The maximization of the likelihood function requires about 30,000 evaluations in all cases,

but is about a factor of 50 times faster using the rational or polynomial approximation.

2The dimension of the problem and the convergence criteria of the MultiNest algorithm strongly influence the

number of required function calls.
3The degree is chosen such that the number of coefficients is comparable to the number of coefficients used in

the rational approximations.



Figure (1) shows two-dimensional profile-likelihood projections of the three-dimensional

likelihood limits when using the expensive full simulation, our rational approximation results,

and a polynomial approximation. Clearly, the rational approximation faithfully represents the

full simulation, while the polynomial approximation is only valid over a limited range.
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Figure 1: Two-dimensional profile-likelihood projections of a 3-dimensional parameter space

with superplot [22]. Regions of higher likelihood are darker. The data are normalized to the

maximum observed likelihood.

4.2 Tuning HEP Event Generators by Automatic Selection of Observable Weights

As described earlier, we have developed several algorithms for adjusting the weights used

in our tuning heuristic. For comparison, we re-consider a tuning exercise performed by the

ATLAS collaboration [23, 24] using a large set of LHC data.

Figure 2 shows cumulative distribution of χ2 values per bin for several different classes

of observables. The results of the ATLAS expert tune and a much simpler approach using

equal weights for all observables is also shown. Note that the parameters obtained from the

robust optimization perform well for Jet shapes and Track-jet UE. We also see that near the

variance boundary, the parameters obtained from the Expert tune perform better for Multijets
and tt̄ gap whereas the parameters obtained from the other approaches perform better for

Substructure. These plots demonstrate the trade-off in fitting among the different approaches,

which enables the physicist to use these results as guidance for selecting the most appropriate

tuning method depending on the categories that are of greater significance.

5 Conclusion

In this paper, we propose an improved software package called apprentice that enables

the construction of pole-free rational approximation, allows for solving the χ2 minimiza-

tion problem using a various optimization algorithms that can detect multiple local min-

ima, and provides multiple optimization formulations to automatically assign weights to

the observables yielding a less subjective and less time-consuming process to find the op-

timal event generator tune. In the future, we are interested in (a) tuning event generators

using the MC generator data directly using derivative free optimization methods, (b) pro-

viding non-linear optimization algorithms to minimize χ2 that are robust against all local

minima, and (c) exploring machine learning techniques for dimensionality reduction and

for improving the automatic weight assignment toward obtaining optimal generator tune. If

your are interested in these problems or in any other interesting extensions to apprentice,



Figure 2: Cumulative distribution of bins (y axis) in each category of the A14 dataset at

different bands of variance levels (x axis) given by rb(p) =
( fb(p)−Rb)2

Δ fb(p)2+ΔR2
b
.

we look forward to hearing from you. To contribute, either raise an issue in the apprentice

project or contribute via code by forking the project. The apprentice project is located at

https://github.com/HEPonHPC/apprentice.
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